

RADIONUCLIDE INVENTORY

- 1. Neutron activated materials
- Located in the reactor structure and have been irradiated by neutrons
- Major activation products ³H, ¹⁴C, ²²Na, ³⁶Cl, ³⁹Ar, ⁴¹Ca, ⁵⁴Mn, ⁵⁵Fe, ⁵⁹Ni, ⁶³Ni, ⁶⁰Co, ⁶⁵Zn, ⁹³Mo, ⁹³Zr, ⁹⁴Nb, ^{108m}Ag, ^{110m}Ag, ¹²⁵Sb, ¹³³Ba, ¹³⁴Cs, ¹⁵²Eu, ¹⁵⁴Eu, ¹⁵⁵Eu, ^{166m}Ho

MATERIALS TO BE SAMPLED

Material samples

concrete, steel, resins, wood, tiles, paint chips, foam
pipes, sludge, pool water, etc...

Environmental samples

soil/sediment, grass, water

Biological

urine, excrete

Field Sampling

Sampling design should be carefully planned

Sampling is the source of biggest contribution to error in analysis

Sample Receipt and Inspection

Sample Receipt

- -receive in designated areas
- -Check accompanying documents
- -Conduct radiological survey

Sample Inspection

- -Check physical integrity of package and container
- -Confirm sample identity
- -Confirm field preservation, if any

Laboratory Sample Tracking

- -Sample log-in
- -Sample tracking during analysis
- -Storage of sample

lsotope	Half-life	Emission	Detection Methods	MDA, Bq/g	Clearance Level, Bq/g
H-3	1.2E+01	β-	Liquid Scintillation	10	100
C-14	5.7E+03	β-	Liquid Scintillation	1	1
C1-36	3.0E+05	β-	Liquid Scintillation		1
Ca-41	1.0E+05	EC	Liquid Scintillation	(1 to 10)	
Mn-54	8.6E-01	ΕС, γ	Gamma spectrometry	0.5	
Fe-55	2.7E+00	EC, X	Liquid Scintillation or X-ray spectrometry	10	
Co-60	5.3E+00	β-,γ	Gamma spectrometry	0.5	0.1
Ni-59	7.5E+04	EC, X	X-ray spectrometry	10	100
Ce-144	8.0E-01	β-,γ	Gamma spectrometry	0.5	
Ni-63	1.0E+02	β-	Liquid Scintillation	1	100
Cs-134	2.1E+00	β-,γ	Gamma spectrometry	0.5	0.1
Cs-137	3.0E+01	β-, γ	Gamma spectrometry	0.5	0.1

Isotope	Half-life	Emission	Detection Methods	MDA, Bq/g	Clearance Level, Bq/g	
I-129	1.6E+07	β-	ICPMS (or X ray spectrometry)	0.007	0.01	
Sr-90	2.9E+01	β-	Beta counting or Liquid scintillation	1	1	
Zr-93	1.5E+06	β-	ICPMS	0.1		
Nb-93m	1.6E+01	IT, X	X ray spectrometry or liquid scintillation	10		
Nb-94	2.0E+04	β-,γ	Gamma spectrometry (or ICPMS)	0.5 (7)	0.1	
Mo-93	3.5E+03	EC,X	X ray spectrometry or liquid scintillation	10	10	
Тс-99	2.1E+05	β	ICPMS	0.6		
Ru-106	1.0E+00	β-,γ	Gamma spectrometry	0.5		
Ag108m	1.3E+02	ΕС, γ	Gamma spectrometry	0.5		
Ag-110m	7.0E-01	β-,γ	Gamma spectrometry	0.5		
Sb-125	2.8E+00	β-,γ	Gamma spectrometry	0.5		
Ba-133	1.1E+01	ΕС, Χ, γ	Gamma spectrometry	0.5		

Isotope	Half-life	Emission	Detection Methods	MDA, Bq/g	Clearance Level, Bq/g
Eu-152	1.3E+01	EC, β ⁻ ,X, γ	Gamma spectrometry	0.5	0.1
Eu-154	8.6E+00	β-,Χ, γ	Gamma spectrometry	0.5	0.1
Eu-155	4.8E+00	β ⁻ ,Χ, γ	Gamma spectrometry	0.5	1
Ho-166m	1.2E+03	β ⁻ ,Χ, γ	Gamma spectrometry	0.5	
U-234	2.5E+05	α. X	Alpha spectrometry	0.02	
U-235	7.0E+08	α,, γ	ICPMS	0.0001	
U-238	4.5E+09	α	ICPMS	0.00001	
Pu-238	8.8E+01	α. X	Alpha spectrometry	0.02	
Pu-239	2.4E+04	α	Alpha spectrometry	0.02	0.1
Pu-241	1.4E+01	β-	Liquid scintillation	1	
Am-241	4.3E+02	α. Χ, γ	Alpha spectrometry	0.02	
Cm-242	4.5E+01	α. Χ	Alpha spectrometry	0.02	
Cm-244	1.8E+01	α. X	Alpha spectrometry	0.02	

Gamma Spectrometry

•Nondestructive analysis of gamma emitting radionuclides

•Requires minimum sample preparation

•Measure gamma radiation using scintillation detectors (NaI (Tl)) crystals and semiconductor detectors (High purity germanium detectors)

- I. Sample Preparation
 - Liquid Samples
 - Evaporation
 - Adsorption with AMP (Cs)/Precipitation with MnO2 (other metals except Cr)
 - Ion-exchange resin
 - 2. Solid Samples
 - Dry, grind, sieve, mix to homogenize, get sub sample
 - 3. Air particulate filters, Swipe/Smear Samples
 - No pretreatment
 - Leach with dilute HNO3 or 0.05M EDTA

II. Standard Calibration

- III. Spectrometer Calibration
 - 1. Energy Calibration
 - 2. Efficiency Calibration
 - 3. Quality Control Check
- IV. Sample Measurement
 - 1. Count a blank sample
 - 2. Determine minimum detectable activity (MDA)
 - 3. Count sample
- V. Statistical Treatment of Data
 - 1. Calculate Activity including correction factors
 - 2. Calculate total uncertainty

Alpha Spectrometry

- •Analysis of alpha emitting radionuclides
- •Requires radiochemical separation
- •Use of Si semiconductor detectors

I. Sample Treatment

- 1. Liquid Samples
 - Acidify and filter
 - May reduce volume by evaporation or ion exchange

2. Solid Samples

- Drying, grinding, sieving, homogenize
- May reduce volume by ashing
- Sample decomposed with concentrated acids, e.g. HCl, HNO₃, HF; H₂O₂ or alkali fusion with K₂CO₃
- Sample can be leached with dilute nitric acids or complexing agents

$2 \qquad \text{Air}$	Dortion	lata ar S	wino/S	moor	malag
J. All	ratucu		wipe/s	mear sa	imples

- Cellulose and membrane filters can be dissolved in mineral acids
- Glass-fiber filters can be leached with dilute acids or chelating agents
- I. Preconcentration
 - Precipitation
- II. Chemical Separation
 - Anion exchange
- III. Source Preparation
 - Electrodeposition
 - Precipitation with cerium or lanthanum
- IV. Counting

Liquid Scintillation Counting

- •Gross alpha/beta analysis of samples
- •Analysis of beta emitters
- •Analysis of alpha emitters
- •May require radiochemical separation

I. Sample Preparation

- 1. Liquid Samples
 - Distillation/electrolytic enrichment (³H)
 - Oxidation/CO₂ trapping (^{14}C)
 - Reduce volume by evaporation, ion exchange, precipitation
- 2. Solid Samples
 - Dissolution with concentrated mineral acids (for activated and geogenic samples)
 - Leaching with dilute mineral acids (for surface contaminated samples
 - Reduce volume by ashing at high tempeatures (except volatile radionuclides, e.g. ¹²⁹I, ⁹⁹Tc

- 3. Air Particulate/Swipe/Smear Samples
 - Cellulose and membrane filters can be dissolved in concentrated mineral acids
 - Glass fiber filters can be leached with dilute mineral acids or chelating agents
 - Filter paper can be placed directly in LSC vial with addition of liquid scintillant
 - II. Setting of Measurement Conditions for Radionuclide
 - Determination of Figure of Merit (FOM)
 - III. Drawing of Quench Correction Curve
 - Preparation of quench standards
 - Draw quench correction curve
 - Efficiency determination

- V. Calculation of Activity
 - Calculate Average, $X \pm 3\sigma$
 - Correct activity using decay correction factor

